On Arithmetic Progressions on Genus Two Curves

نویسنده

  • MACIEJ ULAS
چکیده

We study arithmetic progression in the x-coordinate of rational points on genus two curves. As we know, there are two models for the curve C of genus two: C : y = f5(x) or C : y = f6(x), where f5, f6 ∈ Q[x], deg f5 = 5, deg f6 = 6 and the polynomials f5, f6 do not have multiple roots. First we prove that there exists an infinite family of curves of the form y = f(x), where f ∈ Q[x] and deg f = 5 each containing 11 points in arithmetic progression. We also present an example of F ∈ Q[x] with deg F = 5 such that on the curve y = F (x) twelve points lie in arithmetic progression. Next, we show that there exist infinitely many curves of the form y = g(x) where g ∈ Q[x] and deg g = 6, each containing 16 points in arithmetic progression. Moreover, we present two examples of curves in this form with 18 points in arithmetic progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic progressions on Huff curves

We look at arithmetic progressions on elliptic curves known as Huff curves. By an arithmetic progression on an elliptic curve, we mean that either the x or y-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, Edwards curves, and genus 2 curves. We find an infinite number...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Five Squares in Arithmetic Progression over Quadratic Fields

We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...

متن کامل

On Simultaneous Arithmetic Progressions on Elliptic Curves

and we consider two equations related by such a change of variables to represent the same curve (equivalently, we will deal with elliptic curves up to so-called Weierstrass changes of variables). Consider P0, . . . , Pn ∈ E(K), with Pi = (xi, yi) such that x0, . . . , xn is an arithmetic progression. We say that P0, . . . , Pn are in x-arithmetic progression (x-a.p.) and also say that E has an ...

متن کامل

Arithmetic Progressions of Three Squares

In this list there is an arithmetic progression: 1, 25, 49 (common difference 24). If we search further along, another arithmetic progression of squares is found: 289, 625, 961 (common difference 336). Yet another is 529, 1369, 2209 (common difference 840). How can these examples, and all others, be found? In Section 2 we will use plane geometry to describe the 3-term arithmetic progressions of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008